If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3d^2-40d+56=0
a = 3; b = -40; c = +56;
Δ = b2-4ac
Δ = -402-4·3·56
Δ = 928
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{928}=\sqrt{16*58}=\sqrt{16}*\sqrt{58}=4\sqrt{58}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-4\sqrt{58}}{2*3}=\frac{40-4\sqrt{58}}{6} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+4\sqrt{58}}{2*3}=\frac{40+4\sqrt{58}}{6} $
| 50x+25=350 | | 65y=32(2y+8) | | 7x+21-3x=5+6x+30-4 | | 73=(1+5n)+6 | | x3+7=2 | | 4(w=1)=24 | | -8m+8-5(m-3)=3m-(6m-2)-7m+9 | | x+3x+1.5+180=455 | | -10x-3=77 | | 2=11/4k-3 | | (x+15)+(5x+57)=90 | | 5=30^x | | 65=32(2y+8) | | 1.5y-7=O.5y | | 2x–7=-11 | | 7c-16=26-5c | | 4(x-3)=8(x+4 | | 1/2+4=1/8b+88 | | -9p-3(6-6p)=6(p-2)-21 | | X^-4x=0 | | (5/x)+5/(x+10)=4/3 | | (6x+59)=(3x-14) | | 170=50+0.15x | | 2(8s+8)-10s=3(2s+6)-20 | | 12x+2=-12x+26 | | (5/x)+(5/(x+10))=4/3 | | M=b/8 | | 9p-17=48+4p | | 8-(2a+5)=8-2a+5 | | 12/20x=-36/44 | | -16/19x=-20/38 | | X=54+1/6x |